1. $\frac{4}{7} + \frac{3}{4} =$
2. $8 \frac{5}{6} + 2 \frac{2}{9} =$
3. $\frac{5}{6} - \frac{3}{5} =$
4. $4 \frac{11}{16} - 2 \frac{3}{8} =$
5. $\frac{5}{6} \times \frac{3}{5} =$
6. $\frac{2}{9} \times \frac{2}{3} =$
7. $\frac{1}{12} \div \frac{7}{9} =$
8. $\frac{3}{7} \div \frac{3}{5} =$
9. Change $\frac{1}{6}$ to a decimal
10. Change $.625$ to a fraction
11. $4.9 + 17 3.28 =$
12. $13 - .932 =$
13. $73.8 \times .06 =$
14. $3237 \div .039 =$
15. $8.1 \div .003 =$
16. Change 12% to a fraction
17. ____ is 80% of 500?
18. 14 is ____ $\%$ of 35?
19. 75% of ____ is 48?
20. ____ is 10% of 17
21. 17 is ____ $\%$ of 85
22. 25% of ____ is 10
23. $3^3 =$
24. $4^2 \times 5 =$
25. $\sqrt{64} =$
26. $\sqrt{3} =$
27. $\frac{2}{3} = \frac{?}{15}$
28. $14/? = \frac{28}{12}$
29. $-21 + 9 =$
30. $-5 + 2 =$
31. $24 \times -3 =$
32. $-66 \div -3 =$
33. $-12 \div -15 =$
34. $6 \times -7 =$
35. $24 \div -6 =$
36. $-13 - -4 =$
37. Solve $x + 2y - 4$ if $x=3$, $y=4$
38. Solve $2(3x-y) + 4y$ if: $x = 5$, $y = 2$
39. Solve for x \hspace{1cm} $2(x-3) = 10$
40. Solve for x \hspace{1cm} $4x-3=13$
Learning new things and building basic skills may be challenging for you, but they also can be very exciting. When you follow the guidelines for learning basic skills, you will be acquiring skills that will prepare you for life.

Answer Key

1. \(\frac{4}{7} + \frac{3}{4} = \frac{9}{28} \)

2. \(8 \frac{5}{6} + 2 \frac{2}{9} = 11 \frac{1}{18} \)

3. \(\frac{5}{6} - \frac{3}{5} = \frac{7}{30} \)

4. \(4 \frac{11}{16} - 2 \frac{3}{8} = 2 \frac{5}{16} \)

5. \(\frac{5}{6} \times \frac{3}{5} = \frac{1}{2} \)

6. \(\frac{2}{9} \times \frac{2}{3} = \frac{4}{27} \)

7. \(\frac{1}{12} + \frac{7}{9} = \frac{3}{28} \)

8. \(\frac{3}{7} \div \frac{3}{5} = \frac{5}{7} \)

9. Change \(\frac{1}{6} \) to a decimal \(.1666 \)\(\overline{6} \)\(\)

10. Change \(.625 \) to a fraction \(\frac{5}{8} \)

11. \(4.9 + 17 + 3.28 = 25.18 \)

12. \(13 - .932 = 12.068 \)

13. \(73.8 \times .06 = 4.428 \)

14. \(3237 \div .039 = 83,000 \)

15. \(8.1 \div .003 = 2,700 \)

16. Change 12% to a fraction \(\frac{3}{25} \)

17. \(400 \) is 80% of 500?

18. 14 is \(_40_ \) % of 35?

19. 75% of \(_64_ \) is 48?

20. \(_1.7_ \) is 10% of 17

21. 17 is \(_20_ \) % of 85

22. 25% of \(_40_ \) is 10

23. \(3^3 = 27 \)

24. \(4^2 \times 5 = 80 \)

25. \(\sqrt{64} = 8 \)

26. \(\sqrt{9} = 3 \)

27. \(\frac{2}{3} = \frac{10}{15} \)

28. \(\frac{14}{6} = \frac{28}{12} \)

29. \(-21 + 9 = -12 \)

30. \(-5 + 2 = -3 \)

31. \(24 \times (-3) = -72 \)

32. \(-66 \div (-3) = 22 \)

33. \(-12 \div -15 = .8 \)

34. \(6 \times -7 = -42 \)

35. \(24 \div -6 = -4 \)

36. \(-13 \div (-4) = -9 \)

37. Solve \(x + 2y - 4 \) If: \(x = 3, y = 4 \) \(7 \)

38. Solve \(2(3x - y) + 4y \) If: \(x = 5, y = 2 \) \(34 \)

39. Solve for \(x \) \(2(x - 3) = 10 \) \(8 \)

40. Solve for \(x \) \(4x - 3 = 13 \) \(4 \)
A decimal is a number that represents PART of a whole. Decimals are another way of writing fractions that have denominators that are powers of ten.

ADDING & SUBTRACTING DECIMALS

When **ADDING** or **SUBTRACTING** decimals, rewrite the problem in column form. Then just line up the decimals, add any zeros if necessary, and just add or subtract as you would with whole numbers. Place the decimal for the answer directly below the decimals in the problem.

MULTIPLYING DECIMALS

When **MULTIPLYING** decimals, rewrite the problem in column form. Ignore the decimal and multiply as you would with whole numbers. Count the number of decimal places (on the right side of the decimal) in each number. The total tells you how many decimal places will be in the answer.

DIVIDING DECIMALS

When **DIVIDING** decimals with a whole number, it works exactly like regular long division. with just one difference. Start by rewriting the problem using the long division format.

Problem: $2.35 \div 5 =$
When **DIVIDING decimals with a decimal** it works exactly like regular long division. . .Start by rewriting the problem using the long division format.

Problem: \(6.85 \div .5 =\)

Move the decimals to the right on both numbers until you are dividing by a whole number.

Then divide as you normally would.

- **TIP**

Remember, you can check your answer by multiplying

\[13.7 \times 5 = 68.5\]

Order of Operations

“Operations” means things like add, subtract, multiply, divide, squaring, etc. If it isn’t a number it is probably an operation. But, when you see something like . . .

\[7 + (6 \times 5^2 + 3)\]

. . .what part should you calculate first?

Start on the left and go to the right?

Or go from right to left?

Warning: Calculate them in the wrong order and you will get a wrong answer!

All you have to remember. . .PEMDAS

(Please Excuse My Dear Aunt Sally)

- **1st** Parenthesis \((\quad)\)
- **2nd** Exponents \(X^2\)
- **3rd** Multiply or Divide \(x \text{ or } /\)
- **4th** Add or subtract \(+ \text{ or } -\)

\[6 \times (5 + 3) = 30 + 3 = 33\]

Problem: \(6 \times (5 + 3) = 6 \times 8 = 48\)
Fractions are for counting **PART** of something.

\[
\frac{1}{4}
\]

One quarter of this square is red.

Mixed numbers are used when you need to count whole things **AND** parts of things at the same time.

How much of these squares are red?

There are \(3\) whole squares and \(\frac{1}{4}\) of another square...

We write it like this: \(3\frac{1}{4}\) and read it like “three and one fourth.”

ADDING & SUBTRACTING FRACTIONS WITH SAME DENOMINATORS

If you cut up the hexagon, each piece △ is \(\frac{1}{6}\) of the hexagon.

And pieces △ △ △ △ △ is \(\frac{4}{6}\) of the hexagon.

So, what would △ + △ △ △ △ △ = △ △ △ △ △ △ \(= \frac{5}{6}\) OR \(\frac{1}{6} + \frac{4}{6} = \frac{5}{6}\)

We can only do this when the denominators are the same!

ADDING & SUBTRACTING FRACTIONS WITH DIFFERENT DENOMINATORS

\[
\frac{1}{2} + \frac{1}{3} \quad \rightarrow \quad \frac{1 \times 3}{2 \times 3} = \frac{3}{6} \quad \rightarrow \quad \frac{3 + 2}{6} = \frac{5}{6}
\]

The main rule of this game is that we can't do anything until the denominators are the same!

We need to find something called the Lowest Common Denominator (LCD)... It's really just the Lowest Common Multiplier (LCM) of our denominators, \(2\) and \(3\).

The LCM of \(2\) and \(3\) is \(6\). So, our LCD \(6\). We need to make this our new denominator...
MULTIPLYING FRACTIONS

To multiply fractions, you need to multiply all the numerators together, and then multiply all the denominators. However, if you have **mixed numbers** to multiply, you must first convert them into an **improper fraction** and then multiply these fractions.

\[
\frac{1}{3} \times \frac{2}{5} \rightarrow \frac{1 \times 2}{3 \times 5} = \frac{2}{15}
\]

\[
\frac{5\frac{2}{3}}{\frac{4}{3}} \rightarrow \frac{17}{12} = \frac{1\frac{5}{12}}{1}
\]

DIVIDING FRACTIONS

To divide fractions, you flip or invert the fraction that you are dividing by and then proceed to multiply the fractions as explained previously.

Problem: \(\frac{1}{3} \div \frac{3}{4}\)

\[
\frac{1}{3} \div \frac{3}{4} = \frac{1}{3} \times \frac{4}{3} = \frac{4}{9}
\]

Simplify by cross-canceling and reducing

Problem: \(\frac{5}{7} \div \frac{10}{15}\)

\[
\frac{5}{7} \div \frac{10}{15} = \frac{5}{7} \times \frac{15}{10} = \frac{5 \times 15}{7 \times 10} = \frac{1 \times 15}{7 \times 2} = \frac{15}{14} = 1 \frac{1}{14}
\]

CONVERTING DECIMALS TO FRACTIONS

Remove the decimal point and make the decimal number the numerator.

Problem: Convert .5 to a fraction

\[
.5 = \frac{5}{10} = \frac{5}{5} = \frac{1}{2}
\]

Here is another example...

\[
.26 = \frac{26}{100} = \frac{26}{2} = \frac{13}{50}
\]

CONVERTING FRACTIONS TO DECIMALS

Fractions and decimals represent the same things: numbers that are not whole numbers. Just divide the top of the fraction (Numerator) by the bottom (Denominator), and read off the answer!

\[
\frac{1}{3} \rightarrow 3\sum\frac{1}{1} \rightarrow 3\sum\frac{.3}{1.0} \rightarrow 3\sum\frac{.33}{1.00} \rightarrow 3\sum\frac{.333}{1.000}
\]

\[
-9 \quad -9 \quad -9
\]

\[
\frac{1}{1} \quad \frac{10}{-9} \quad \frac{10}{-9}
\]

\[
\frac{1}{1} \quad \frac{10}{-9} \quad \frac{10}{-9}
\]
Percent problems are **ALWAYS** made up of three numbers: Part, Whole and Percent. You will **ALWAYS** have two of these three numbers. To solve a percent problem, you simply solve for the missing number.

The first thing you have to do is determine what you have and what is missing.

Don’t Forget!

1. The **Percent** is **ALWAYS** followed by a % sign or the word **percent**.
2. The **Whole** **ALWAYS** comes after the word “OF”.
3. The **Part** **ALWAYS** comes after the word “IS”.

Problem:

12 is what percent of 48?

Part = 12

Whole = 48

Percent = ?

\[
\frac{\text{Part}}{\text{Whole}} = \frac{\text{Percent}}{100}
\]

\[
\frac{12}{48} = \frac{\text{Percent}}{100}
\]

\[
12 \div 48 = \text{Percent}
\]

\[
12 \div 48 = 25\% \, (0.25)
\]

Problem:

2% of 300 = ?

Part = ?

Whole = 300

Percent = 2% (.02)

\[
\text{Percent} \times \text{Whole} = \text{Part}
\]

\[
0.02 \times 300 = ?
\]

\[
0.02 \times 300 = 6
\]

Problem:

75% of ? = 9

Part = 9

Whole = ?

Percent = 75% (.75)

\[
\text{Part} \div \text{Percent} = \text{Whole}
\]

\[
9 \div 0.75 = ?
\]

\[
9 \div 0.75 = 12
\]

Diane’s Tip

Cross Multiply

THEN Divide!
ADDING RULES:
Positive + Positive = Positive
\[2 + 3 = 5 \]

Negative + Negative = Negative
\[-2 + -3 = -5 \]

Positive + Negative = Use the sign of the larger number and subtract.
\[2 + -5 = -3 \]

SUBTRACTING RULES:
Negative - Positive = Negative:
\[(-5) - (-3) = -5 + 3 = -2 \]
Positive - Negative = Positive + Positive = Positive:
\[5 - (-3) = 5 + 3 = 8 \]
Negative - Negative = Negative + Positive = Use the sign of the larger number and subtract (Change double negatives to a positive)
\[(-5) - (-3) = (-5) + 3 = -2 \]

MULTIPLYING RULES:
Positive X Positive = Positive: 3 X 2 = 6
Negative X Negative = Positive: (-2) X (-8) = 16
Negative X Positive = Negative: (-3) X 4 = -12
Positive X Negative = Negative: 3 X (-4) = -12

DIVIDING RULES:
Positive ÷ Positive = Positive: 12 ÷ 3 = 4
Negative ÷ Negative = Positive: (-12) ÷ (-3) = 4
Negative ÷ Positive = Negative: (-12) ÷ 3 = -4
Positive ÷ Negative = Negative: 12 ÷ (-3) = -4

Have you ever been to a party like this?

Everyone is happy and having a good time (they are all POSITIVE). Suddenly, who should appear but the GROUCH (one NEGATIVE)! The grouch goes around complaining to everyone about the food, the music, the room temperature, the other people. . .What happens to the party? Everyone feels a lot less happy. . .The party isn’t fun anymore.

MULTIPLYING and DIVIDING ONLY!!

ONE NEGATIVE MAKES EVERYTHING NEGATIVE

But wait. . .is that another guest arriving? What if another grouch (A SECOND NEGATIVE) appears? The two negatives pair up and gripe and moan to each other about what a horrible party it is and how miserable they are!! But look!!! They are starting to smile; they’re beginning to have a good time, themselves.!!

PAIRS OF NEGATIVES BECOME POSITIVE

Now that the two grouches are together the rest of the people (who were really positive all along) become happy once again. The party is saved!!

The moral of the story is that (at least in math, when **multiplying or dividing**) the number of positives don’t matter, but watch out for those negatives!!

To determine whether the outcome will be positive or negative, count the number of negatives; If there are an even number of negatives-- and you can put them in pairs--the answer will be positive, if not. . .it’ll be negative:

Negatives in PAIRS ARE POSITIVE;
NOT in pairs, they’re NEGATIVE.
EXONENTS & SQUARE ROOTS

An exponent indicates how many times a number (the base) should be multiplied by itself. For example, 3^2 means 3×3 and is read “three to the second power” or “three squared.”

For example: $3^2 + 1 = 10$ ($3 \times 3 + 1 = 10$)

SQUARE ROOTS

The square root ($\sqrt{}$) of a number, say 9, can be found by finding a number that when multiplied by itself is 9. $\sqrt{9} = 3$ because $3 \times 3 = 9$.

The table lists some commonly used numbers and their squares. If you know the squares, you can find the square roots. For example: $2^2 = 2 \times 2 = 4$ Another example: $2^3 = 2 \times 2 \times 2 = 8$

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1^2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2^2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3^2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4^2</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>5^2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>6^2</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>7^2</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>8^2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>9^2</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>10^2</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

EQUATIONS

Addition Equation

$X + 2 = 9$

Step 1--Subtract 2 from each side

- 2

$X = 7$

Subtraction Equation

$X - 7 = 4$

Step 1--Add 7 to each side

+ 7

$X = 11$

Multiplication Equation

$6X = 24$

Step 1--Divide each side by 6

$6X = 24$

$6 \div 6 = 4$

Division Equation

$X/6 = 2$

Step 1--Multiply each side by 6

$\times \ 6$

$X = 12$

RULES FOR WORKING WITH EQUATIONS

1. An equation is a statement that two quantities are equal.

2. Remove parentheses by multiplication, if needed.

3. Must get unknown value alone and on one side of the equation.

4. Always collect like terms.

5. Whatever you do to one side of the equal sign must be done to the other side of the equal sign.

6. Add and subtract first, multiply and divide last.

Good Luck and don’t forget to... PRACTICE, PRACTICE, PRACTICE!